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Momentum and Hamiltonian Operators in 
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The self-adjointness of momentum operators in generalized coordinates, ques- 
tioned by Domingos and Caldeira is shown. The momentum operators of a particle 
and the kinetic part of its Hamiltonian operator constructed from them are 
characterized as self-adjoint operators and geometrical objects in coordinate-free 
form. Local coordinates of an n-dimensional Riemannian manifold are taken as 
the generalized coordinates of the particle. As an example the curvilinear coordi- 
nates of Euclidean space are treated. The coefficients of connection and curvature 
are given on the manifold for which the assumed momentum operators exist. It 
is found that if our momentum operators form a complete set of mutually com- 
muting observables, the manifold is locally Euclidean, i.e., there exists a local 
coordinate system such that we obtain the usual Schr6dinger correspondence rule. 

1. I N T R O D U C T I O N  

In quantum mechanics linear operators acting on wave functions 
correspond to physical quantities such as the coordinates and the momen- 
tum of particles and their functions, in terms of which classical mechanics 
is built up. These operators are expected to have the following properties: 

(a) They satisfy Bohr's correspondence principle. 
(b) The correspondence rule between classical quantities and these 

operators is invariant under coordinate transformations. 
(c) They are self-adjoint. 
(d) We arrive at the correct representation of the Harniltonian opera- 

tor of a free particle with mass m in the form 

1 
H =  ~mm A (1) 

where A is the Laplace-Beltrami operator. 
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Several authors have proposed various rules for producing quantum 
operators from classical quantities in generalized coordinates (e.g., see 
Gruber, 1971, and references therein). Properties (a) and (b) were studied 
in order to yield (d) mainly by Gruber (1971, 1972) and Castellani (1978), 
respectively. It seems to us that the operators do not satisfy some of the 
four properties (a-d) above. In particular, the question was raised by 
Domingos and Caldeira (1984) as to whether the momentum operators in 
generalized coordinates satisfy (c). 

The purpose of this paper is to characterize the momentum operators 
and the kinematic part of the Hamiltonian operator of a particle in the 
coordinate representation as geometric objects of an n-dimensional 
Riemannian manifold independently of the coordinates chosen, so as to 
satisfy (b)-(d), taking the generalized coordinates of the particle as local 
coordinates of the manifold. They are defined as the differential operators 
corresponding to infinitesimal isometries with constant length which are 
mutually orthogonal at each point of the manifold and their homogeneous 
polynomial of degree 2 invariant under the isometries. In Section 2 we deal 
with the connection between the momentum operator and the group of 
translations (isometries) in the one-dimensional case. In Sections 3 and 4 
we define the momentum operators and the Hamiltonian operator of a free 
particle by extending the considerations of Section 2 to the Riemannian 
manifold. It is shown that they satisfy (c) and (d). Property (a) is satisfied 
only for Cartesian coordinates of Euclidean space. Section 4 is devoted to 
the case of curvilinear coordinates of Euclidean space. In Section 5 we 
obtain the coefficients of connection and curvature of Riemannian mani- 
folds for which there exist the momentum operators defined in Section 3. 

2. MOMENTUM OPERATOR IN ONE DIMENSION 

In the line • with coordinate x, we consider the group of translations 
x = x + t. The group of translation operators T(t) acting on the set 
L 2 ( -  ~ ,  ~ )  of all complex-valued functions of a real variable such that 
the square of their absolute values is integrable is defined by 

(T( t ) f ) (x)  = f ( x  + t), f e L 2 ( - -  ~ ,  ~ )  

Its infinitesimal generator A for differentiable functions in L 2 ( - ~ ,  ~ )  
given by 

(Af)(x)  = lim (T( t ) f ) (x)  - f ( x )  = limf(X + t) - f ( x )  = d f (x) 
t~o t t-o l a x  

regarded as an infinitesimal isometry which is a unit vector at each point x 
of R. 
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Using the operator A, we define the momentum operator of  a particle 
moving along R as P = - i A .  The domain D(P) of  P is the set of all 
f e La( - 0% oo) for which df/dx exists and df/dx e L2( - co, oo). Since D( P) 
is dense in L2( - o% oo), there exists an operator adjoint to P. The operator 
P is self-adjoint (e.g., Akhiezer and Glazman, 1981) and the spectrum a(P) 
of  P is the whole real axis R. P possesses a complete system of eigenfunc- 
tions e ~x belonging to the eigenvalues 2 ca(P). These eigenfunctions do not 
belong to L 2 ( -  o% co) and are considered as linear functionals o n  a test 
function space of  infinitely differentiable functions of compact support. 

We next consider the circle S'  with coordinate 0 and the group of  
translations on S 1. The infinitesimal generator of  this group is expressed by 
d/dO, which is considered as an infinitesimal isometry with unit length. We 
regard L = - i  d/dO as the momentum operator of a particle in S ~. The 
domain D(L) of  L is the set of  differentiable functions q~ for which the 
boundary condition q~(0)=~p(2n) is satisfied and d~p/dO belongs to 
L2(0, 2n). L is self-adjoint operator in L2(0, 2n) (e.g., Akhiezer and Glaz- 
man, 1981). The eigenvalues of  L are rneZ and L possesses a complete 
system of  eigenfunctions e sm~ belonging to D(L). 

3. FORMATION OF M O M E N T U M  OPERATORS IN A 
RIEMANNIAN MANIFOLD 

In Euclidean space $ the infinitesimal isometries consist of  infinitesi- 
mal translations and rotations. The infinitesimal translations are repre- 
sented by the vector fields ~/~x ~ (i = 1, 2, 3) which are mutually orthogonal 
unit vectors at all points of  $3 forming a basis of  the Lie algebra of  the 
translation group of  R 3, while the infinitesimal rotations cannot be repre- 
sented by vector fields with constant length. Using the former vector fields, 
we can express the momentum operators P~ of a particle in R 3 by 

P =  --i  ~xi, i =  1,2,3 

with the identification of differential operators on M. This fact leads us to 
the following definition of the momentum operators of  a particle in a 
Riemannian manifold. 

We consider the system of  a particle and regard the generalized 
coordinates ql, q2 . . . . .  qn of this particle as a local coordinate system 
x = (x 1, x2 . . . . .  x ' )  in a coordinate neighborhood U of an n-dimensional 
Riemannian manifold M with metric g. Corresponding to the group of  
translations of  R 3, we introduce a group G consisting of  isometries of M 
and assume that there exists a set of  infinitesimal isometries X~, ) ( 2 , . . . ,  X n 
of  M which are n mutually orthogonal unit vectors with respect to g at each 
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point of M and form a basis of a Lie algebra of  vector fields on M 
isomorphic with the Lie algebra of the group G. If  we take a local 
coordinate system t = (t 1, t 2 . . . . .  t n) of G at the unit element of G and 
express the action of G on U of M as 

x k" = d#k(X, t), q~kEC~(U) (k = 1, 2 , . . . ,  n) 

denoting the set of  real analytic functions on U by C~(U) ,  we can express 
the Xi in terms of these coordinate systems of M and G as 

0 
Xi = ~i) Ox k, r (i = 1, 2 . . . . .  n) 

where we used the summation convention of repeated indices (this conven- 
tion will be used throughout this paper) and put 

L 0 t '  , = o  

An orthogonal transformation of coordinate t 

t j" ~_ a~i t  i 

gives rise to a transformation of Xi such that 

~j. i k k = ajX~, where a; aj = 6 u 

We define the momentum operators of the particle in M as 

Pg = - i X  i for each i (2) 

identifying the vector fields with differential operators on M. 
We denote the space of infinitely many times differentiable complex- 

valued functions with compact support in M by C~ (M). For  f ,  h ~ C~ ~ (M) 
an inner product is defined by 

( f ,  h) = fM ftTdv (3) 

where dv is the Riemannian measure of M. In terms of  the local coordinate 
system in the neighborhood U of M, dv is expressed as 

dv = [det(gtm)l i/2 dx I dx 2 . . .  dx n, g~,~ = g , Ox '~ 

Using partition of unity, we interpret (3) as the integration over M. 
Considering the P~ as the differential operators on C~ (M), we express 

the formally adjoint operator P* of  Pi by 

(P~f, h) = (f ,  P* h) for all f ,  h e Cg  (M) and each i 
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In terms of local coordinates of U, we have the expression 

P*f  = iX*f (4) 

for f e C ~  (M) which has compact support inside U, where 

1 O 
X ' f =  [det(gtm)]l/z Ox k [det(gb~)]l/2r = - X i f  - f  div Xi 

Since Xi is the infinitesimal isometry, the components of Xi must 
satisfy Killing equations, from which we obtain 

div X~ = 0 (5) 

We denote a Hilbert space obtained by completion of C~(M) with 
respect to the inner product (3) by L2(M)~ Using the same notation as for 
the inner product on C~ (M), we introduce the inner product on Lz (M) by 

(f, h) = lim(f,, h,) for f, h EL2(M) (6) 

where {fn} is a Cauchy sequence in C~(M) corresponding to f~L2(M). 
From the relations (4) and (5), we find that Pi is a symmetric operator, 
considered as a linear operator in L2(M). 

We introduce the one-parameter subgroup [~0 t : t ~ }  of G generated 
by Xi for each X; on M and define a family of linear operator {U(t): t e~}  
by 

U(t)f(p) =f(~ot(p)) for all feL2(M) and p e M  (7) 

Since dv is invariant under the isometries of M, we have 

(U(t)f, U(t)f) = ( f , f ) ,  f e C ~ ( M )  (8) 

denoting the restriction of U(t) to C~(M) by the same symbol. From (6), 
U(t) defined by (7) satisfies the same relation as (8) for allfeL2(M). As the 
result, it is a one-parameter group of unitary operators on L2(M). By 
Stone's theorem (e.g., Weidmann, 1980), the infinitesimal generator Ai of 
U(t) is defined in L2(M) and -iAe is self-adjoint, which is the self-adjoint 
extension of P; as a linear operator in L2(M). 

4. C O N S T R U C T I O N  O F  T H E  H A M I L T O N I A N  O P E R A T O R  F R O M  
T H E  M O M E N T U M  O P E R A T O R S  

The classical Hamiltonian of a particle moving freely in M is consid- 
ered to be 

1 Hc = ij ~-~m g P,Pj 
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where (g"0 is the inverse of (g;j) and Pk is the canonical momentum of the 
particle conjugate to x k. Since the inverse of (g(Xi, Xj,))= (fi;j) is (6/0, 
using the momentum operators defined by (2), we define the quantum 
Hamiltonian operator of the particle in M corresponding to Hc by the 
linear operator 

1 1 
H = ~ m r ~ J P ~ P j =  2mriJXiXj  (9) 

acting on the subset of the space Lz(M ). From (4) and (5) we have 

= t , * t , *  = e j e ,  

We find that H defined by (9) is formally self-adjoint and symmetric in 
Lm(M). Since H is real, it has self-adjoint extensions (e.g., Weidmann, 
1980). From our assumption for X~ and (5) it follows that 

A f =  div g r a d f  = div( (Xf f )X~)  = (~ iJXiX  j 

from which we know that (9) becomes (1). 

5. C U R V I L I N E A R  C O O R D I N A T E S  

We take curvilinear coordinates u i (i = 1, 2, 3) in the space •3 with the 
natural coordinates x i (i = 1, 2, 3). In this case the components of g and 
g-1 are given by 

Ox k ~x k Ou i ~u j 

gij = au i ~u j , gij = Ox k Ox k 

For example, the vector fields 
au k O 

X i --  ~ x  i On k 

are the infinitesimal isometries which are orthonormal with respect to g at 
each point of the domain in R 3 that u i are regarded as a local coordinate 
system, because they satisfy 

auk au l 

gkl OX i ~X  j = 6ij  

and Killing's equations. According to (2), in this choice of the basis of the 
Lie algebra of the infinitesimal isometries of R 3, the momentum operators 
are given by 

Ou k a 

Pi = - i X i  = i Ox i 3u k 
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They are different from the Schr6dinger prescription - i  O/Su i, which are 
not always self-adjoint. 

As an example, we take spherical coordinates (r, 0, q~) in ~[~3 with the 
x 3 axis removed, we have 

8 cos 0 cos ~p 8 sin r 8 
X l = s i n 0 c o s ~ p ~ +  r 80 r sin O &p 

8 cos 0 sin q) 8 cos q~ 8 
I"2 = sin 0 sin ~o ~ + + 

r 80 rsin0809 

8 sin 0 8 
i'3 = cos 0 

8r r 80 

6. A S S U M E D  RIEMANNIAN MANIFOLDS 

We consider the Riemannian manifolds which satisfy the conditions 
assumed in Section 3. The orthonormal basis {X;} of  the infinitesimal 
isometries identified with the basis of  the Lie algebra of  G satisfies 

[x,, ~ ] = c~Xk 

where c~ are the structure constants of the Lie algebra with respect to the 
basis. From the conditions assumed for the manifold, we find that c~ are 
c6mpletely skew symmetric. In terms of  these structure constants, the 
coefficients of  the Riemannian connection and curvature of  M with respect 
to the basis are given by 

F ~  = 1 , R ~ i j  , m_t  ~CIj , = - - -~Ci jUmk 

If  our momentum operators form a complete set of  commuting observ- 
ables, we find that M is locally Euclidean; then there is a local coordinate 
system such that we have the Schr6dinger rule for the momentum opera- 
tors. In particular, for a particle in a two-dimensional manifold, all the 
structure constants are zero, so that there exists no momentum operators 
defined by us unless the manifold is locally Euclidean. In order to define 
the momentum operators for such manifolds, we weaken the definition of  
momentum operators in the following form. We assume that there exist n 
linearly independent vector fields X1, )(2 . . . . .  Xn everywhere on M satisfy- 
ing (5); then we define the momentum operators of a particle in M by (2). 
The Hamiltonian operator constructed from them is given in place of (9) 
by 

H = ~ Pi h ijpj 

where (t7 ij) is the inverse of (hq) = (g(Xi, Xj)). 
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7. CONCLUSIONS 

We have defined the momentum operators in M by (2). Using them, 
we have constructed the Hamiltonian operator of the free particle by (5). 
These momentum operators are not necessarily commutative and the 
commutation relations between them and H are given by 

[P,, Pj] = id~Pk, [H, Pt] = 0 

where d~ are skew-symmetric real constants. If  they form a set of mutually 
commuting observables, M is locally Euclidean and there exists a local 
coordinate system in M for which we obtain the usual Schr6dinger corre- 
spondence rule. 

In the case of curvilinear coordinates of R 3, our definitions contain 
the usual procedure: When applying the correspondence rule with 
Schr6dinger's prescription, the coordinates and momenta must be ex- 
pressed in Cartesian coordinates and then one goes over to curvilinear 
coordinates by carrying out a change of variables. Our method has given 
this procedure a geometrical meaning. The momentum and the Hamilto- 
nian operators thus defined satisfy (b), (c), and (d). Property (a) is not 
satisfied except for Cartesian coordinates of  ~3. The physical quantities of 
the classical mechanical system represented by the variables qi and p; are 
also described by q~ and p~, which are the canonical transformation of  qe 
and p;. Corresponding to all these classical quantities, it seems difficult to 
construct the quantum mechanical counterparts which satisfy all the prop- 
erties ( a ) - (d ) ,  because of  different algebras and transformations. 

As a result of the momentum and the Hamiltonian operators satisfying 
(c), if for a self-adjoint operator A, any one of the momentum and the 
Hamiltonian operators, we can choose a nuclear space D containing 
C ~ ( M )  such that D is dense in L2(M)  and A maps D into itself, we have 
the inclusions: D c L z ( M )  c D' ,  where D '  is the dual space of D, and find 
that A possesses a complete system of  eigenfunctionals belonging to D '  by 
the theorem of self-adjoint operators (Gel 'fand and Shilov, 1976). 
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